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Computer-generated holography (CGH) is a technique for converting a three-dimensional (3D) object scene into
a two-dimensional (2D), complex-valued hologram. One of the major bottlenecks of CGH is the intensive com-
putation that is involved in the hologram generation process. To overcome this problem, numerous research
works have been conducted with the aim of reducing arithmetic operations involved in CGH. In this paper,
we shall review a number of fast CGH methods that have been developed in the past decade. These methods,
which are commonly referred to as point-based CGH, are applied to compute digital Fresnel holograms for an
object space that is represented in a point cloud model. While each method has its own strength and weakness,
trading off conflicting issues, such as computation efficiency and memory requirement, they also exhibit potential
grounds of synergy. We hope that this paper will bring out the essence of each method and provide some insight
on how different methods may crossover into better ones. © 2018 Chinese Laser Press

OCIS codes: (090.1760) Computer holography; (090.1995) Digital holography.
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1. INTRODUCTION

Presentation of three-dimensional (3D) images can be dated
back as early as 1838 when Sir Charles Wheatstone invented
the stereoscope for conveying a left image and a right image to
the corresponding eyes through a pair of mirrors. The two im-
ages observed through the stereoscope will be fused to impart a
3D mental picture in the brain. Based on this important inven-
tion, incessant development of 3D display technology has been
conducted with the aim of providing realistic reproduction of
physical or artificial 3D scenes to the human visual system.
Around 1890, stereoscopic 3D motion pictures had been in-
vented by William Friese-Greene, paving the way to the con-
temporary 3D film industry. Few would disagree that the
stereoscopic display technology and infrastructure developed
to date, such as augmented reality, 3D television, and 3D cin-
emas, are close to perfection as far as the 3D sensation is con-
cerned. However, stereoscopic 3D images (or motion pictures)
usually require observers to wear special spectacles or head-
mount devices, which is inconvenient and may also lead to
fatigue or more undesirable impacts for some viewers. A better
alternative to 3D display is holography, which was proposed by
Dennis Gabor in 1948. Theoretically, a hologram is capable of
recording the full complex-valued optical wavefront of a scene.
As a result, looking at a hologram is identical to watching the
original scene. In the early days, light sensitive films are used to
record holograms of physical objects with a laser beam as the

source of illumination. The process is similar to, though more
complicated than, classical film-based photography. A compre-
hensive history on optical holography can be found in Ref. [1].

In recent years, the remarkable speed of computers has per-
mitted the optical hologram formation process to be simulated
through numerical computation. Given a 3D description on an
object (e.g., an array with each entry representing the intensity
and depth of an object point), a software can be written to cal-
culate its hologram, generally in the form of a two-dimensional
(2D) array of complex-valued entries. The digital hologram, in
turns, can be printed with laser lithographic machines to give a
physical hologram or display with high-resolution electronic
accessible display devices commonly known as spatial light
modulators (SLMs). The process of deriving a hologram
through numerical means is referred to as computer-generated
holography (CGH). Notably, pioneering works include the use
of theoretical methods in CGH by Waters [2] and the realiza-
tion of the first binary computer-generated Fourier hologram
by Brown and Lohmann [3–5]. The holograms generated by
Lohmann and Waters are in-line holograms, and the recon-
structed images are contaminated with the zeroth-order beam
and a de-focused twin image. The problem is overcome by
Burch, who added an inclined reference light in the calculation
to obtain an off-axis hologram [6]. When the angle of incidence
of the reference beam is large enough, the reconstructed image
will be separated from the unwanted signals.
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One of the major problems in CGH is the enormous
amount of computation that is involved in deriving a hologram,
in particular, when the 3D image scene is complicated (e.g.,
comprised of numerous object points), and the size of the holo-
gram is large. Due to the fine pixel size required in a hologram
(which is in the order of a wavelength of light) and the high
complexity of the hologram formation process, generating a
moderate size hologram at a video rate of 25 frames per second
is still a challenging task even with modern computing technol-
ogy. From the 90s onward, there have been numerous research
works on CGH, mainly targeted at development of algorithms
and hardware devices for enhancing the speed in generating
digital holograms. There are three main categories of CGH
methods that are applied for generating the hologram for an
object space that is represented by (a) a group of object points
(point-based method), (b) a sequence of vertical planes that are
parallel to the hologram (layer-based method), and (c) a set of
polygons (polygon-based method). In this review paper, we
shall focus on the point-based method. Some of the recent
works on the layer-based and the polygon-based methods can
be found in Refs. [7–9] and [10–12], respectively.

The objective of this paper is to provide an overall view on a
number of contemporary point-based methods for computer
generation of Fresnel holograms. The Fresnel hologram has
the advantages of representing complicated 3D object scenes
with wide depth range, and the hologram image can be recon-
structed as a visible image simply by illuminating the hologram
with a coherent beam. Organization of the paper is given as
follows. Following the introduction, the fundamental princi-
ples of CGH are given in section 2. Next, two major directions
in fast CGH are reviewed. The first category of methods, which
simplifies some aspects in software implementation (e.g., using
pre-computed data), are presented in sections 3 to 8.
Subsequently, three methods that are based on the simplifica-
tion of the hologram formation process are reported in
sections 9 to 11. Finally, a conclusion is given in section 12.

2. BASIS OF COMPUTER-GENERATED
HOLOGRAPHY

CGH can be interpreted as a numerical simulation of optical
hologram recording. Details on CGH can be found in many
books and literatures, such as Ref. [13], and only a brief intro-
duction will be outlined here. Briefly, instead of employing a
physical object as in optical holography, a computer graphic
(CG) model is employed as the 3D source object. Similar to
digital simulations in most engineering problems, all of the var-
iables (such as distance, frequency, and amplitude) are discre-
tized in CGH. The source object (i.e., the CGmodel) is usually
represented by a collection of self-illuminating points, meaning
that all of the object points are illuminated with a coherent
beam so that each point is emitting a spherical light wave.
Each object point can be regarded as a pixel in the object space,
of which its location can be indexed by its discrete horizontal
position “m”, vertical position “n”, and axial distance (depth)
“z” from the hologram plane, as shown in Fig. 1.

The hologram corresponding to this hypothetic object is
simply the summation of the spherical light waves of all the
object points on the hologram plane. For a single object

point with unit intensity and located at the origin of the object
plane, the optical wave it casts on the hologram at an axial
distance z � zo is given by the spatial impulse response of
propagation [14]

F�m, n; zo� � exp

&
i2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mδ�2 � �nδ�2 � z2o

p
λ

’

� exp

�
iwn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

x � n2y � z2o
q �

, (1)

where λ is the wavelength of light, δ is the sampling distance
between adjacent pixels on the hologram, wn � 2π∕λ,
mx � mδ, and ny � nδ. Note that in writing Eq. (1), we have
neglected the constant amplitude factor 1∕iλzo in front of the
exponential function. In Eq. (1), it is assumed that the thick-
ness of the object space is small as compared with the separation
between the object points and the hologram so that the differ-
ence in attenuation of the spherical waves corresponding to the
set of object points is negligible. The exponential function
F �m, n; zo� on the right-hand side of Eq. (1) is sometimes
referred to as the Fresnel zone plate (FZP). For an object with
P object points, each locating at an axial distance zp from
the hologram, the diffracted wave on the hologram plane
can be computed by summing the FZP of individual object
points, i.e.,

H �m, n� �
XP
p�0

ApF �m − up, n − vp; zp�, (2)

where Ap and �up, vp� are the intensity and location of the pth
object point. We can infer from Eqs. (1) and (2) that the
amount of arithmetic operations involved in generating a holo-
gram is rather overwhelming, especially if the number of object
points and the size of the hologram are large. Assuming both
the horizontal and vertical extents of the hologram and the
object space are discretized into M columns and N rows
and have identical pixel size ‘δ’, the number of operations to
compute a hologram pixel is �M × N × P�, where P is the
number of FZPs in the hologram. Each operation is applied
to calculate the contribution of an object point to a hologram
pixel and is comprised of the arithmetic calculations listed in
Table 1. Additions and subtractions are not included, as the
computation time is negligible in practice.

Fig. 1. Spatial relation between object points and the hologram
plane.
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If the source object is an image plane with intensity distri-
bution I�m, n; zo� that is parallel to and at a distance zo from
the hologram, Eq. (2) can be represented by the convolution (*)
of I�m, n� and F�m, n; zo� as

H �m, n; zo� � I�m, n; zo� � F �m, n; zo�: (3)

Equation (3), in turn, can be implemented in the frequency
space with the Fourier transform. Let Ĩ�ωm,ωn; zo� and
F̃ �ωm,ωn; zo� denote the Fourier transform of I�m, n; zo�
and F �m, n; zo�, and I−1� � is the inverse Fourier transform
operator, we have

H �m, n; zo� � I−1�Ĩ�ωm,ωn; zo�F̃�ωm,ωn; zo��: (4)

For a 3D object, its hologram can be generated with Eq. (4) by
decomposing the object into discrete, equally spaced depth
planes that are parallel to the hologram, as given by

H �m, n� � I−1

"XK −1

k�0

Ĩ�ωm,ωn; zk�F̃ �ωm,ωn; zk�
#
: (5)

In software implementation, Eq. (4) can be conducted more
swiftly than Eq. (2) if the source object is a single planar image.
However, it can be envisaged from Eq. (5) that the computa-
tion will become intensive with an increasing number of depth
planes. In any case, the time taken to generate a hologram of a
3D object for both approaches is still overwhelming. Although
the computation time can be further decreased with special
hardware, such as the graphic processing unit (GPU) [15–17],
the speed improvement is insufficient to meet the video rate.
In the following sections, we shall study some contemporary
research works for fast generation of digital holograms.

3. DIRECT LOOK-UP-TABLE METHOD

From Eq. (2) and Table 1, it can be seen that the majority of
arithmetic operations are involved in the calculation of the
FZP. All of these tedious operations can be discarded if the
FZPs for all possible combinations of m, n, up, vp, and zp
can be pre-computed in advance and stored in the computer
memory as a look-up table (LUT). Each entry of the LUT cor-
responds to value of the function F�m − up, n − vp; zp� for a par-
ticular combination of �m, n, up, vp, zp�; a complex quantity is
comprised of a real part and an imaginary part, which are quan-
tized with a certain number of bytes ‘B’. A hologram of a 3D
object can then be generated by retrieving and summing the
pre-stored FZP of each point after being multiplied by its in-
tensity Ap. Ignoring the time taken to retrieve the pre-stored
data, which is negligible in practice, the maximum amount
of computation in Eq. (2) will be reduced to �M × N × P�
multiplication operations (i.e., one multiplication operation
for a hologram pixel for each object point). The computer

memory required for the LUT is �M 2 × N 2 × Dp × B�, where
Dp is the number of depth planes.

Such an approach, which is commonly referred to as the
LUT method in CGH, can be traced back to the works of
Lucente in the early 1990s [18]. Based on the LUT method,
a hologram can be generated swiftly by superimposing the pre-
computed fringe patterns of individual points. On the down-
side, a large amount of computer memory is required to store
the pre-computed data. For example, a small square hologram
(i.e., M � N ) of the size 1024 × 1024, representing an object
scene of similar dimension, with eight depth planes and B � 2
(1 byte for each of the real and imaginary parts) will result in
an LUT of 10242 × 10242 × 8 × 2 � 17600 gigabytes.

4. NOVEL LOOK-UP-TABLE METHOD

To overcome this problem, the novel LUT (N-LUT) method
[19] has been developed. The method is shown in Fig. 2 and
explained as follows.

From Eq. (2), we can see that the function F �m − up, n −
vp; zp� is a shifted version of F�m, n; zp� along the horizontal
and vertical directions. This function is referred to as principal
fringe patterns (PFPs), which is the FZP of an object point at
the origin of the depth plane at zp. Instead of pre-computing
and storing the FZP for all possible pairings of the object space
and hologram locations, it will suffice to store the PFP for dif-
ferent depth planes that are within the range �z0, zDP−1�, where
DP is the total number of depth planes. An LUT that is used to
store the entire set of PFPs (PFP0 to PFPzDP−1) is known as the
N-LUT. To compute a hologram for a 3D object, the PFP for
each object point [e.g., the one located at �mp, np; zp�] is re-
trieved from the N-LUT and shifted to the position �mp, np�.
The shifted PFP is then multiplied with the intensity of
the object point, and the hologram is obtained by summing the
shifted PFPs of all the object points. Compared with the LUT
method, the number of major arithmetic operations is
about the same, i.e., �M × N × P� multiplication operations,
but the computer memory required to store the N-LUT is
reduced to �M × N × Dp × B�, which is M × N times smaller
than that in the LUT. Referring to the previous example,
the size of the N-LUT for the 1024 × 1024 hologram is
1024 × 1024 × 8 × 2 ≈ 16.8 megabytes. Reducing the size of
the N-LUT, by taking into account the pixel size and

Table 1. Arithmetic Calculations of a Single Operation
for Computing the Hologram with Eq. (2)

Arithmetic Calculation Number

Multiplication 2
Square 3
Square root 1
Exponential function 1

Fig. 2. Novel look-up-table (N-LUT) method.
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reconstruction distance of the digital hologram, has been con-
ducted and reported in Ref. [20].

5. NOVEL LOOK-UP TABLE WITH RUN-LENGTH
CODING METHOD

After the development of the N-LUTmethod, further enhance-
ment has been conducted and reported in Ref. [21] based on
run-length coding. The concept is that physical objects in the
real world generally have a smooth geometry. Locally, object
points that are usually quite close to each other and rather sim-
ilar in intensity can be grouped together as a small region with
homogeneous properties. As a result, a hologram can be gen-
erated on a region wise rather than a pointwise basis, leading to
savings in the computation time. In the improved N-LUT
method, it is assumed that short horizontal segments each com-
prised of object points with identical intensity and axial dis-
tance to the hologram can approximate a smooth object. An
LUT is pre-computed to store the holographic fringe patterns
of these horizontal segments. Similar to the PFP in Ref. [19],
each segment is centered at the origin of the depth plane on
which it resides. The pre-computed fringe patterns of the short
segments are known as the N-point PFPs, and the LUT is

referred to as an N-point N-LUT. Subsequently, the process
of deriving a hologram of a 3D object space with the improved
N-LUT method is outlined as follows. Without loss of general-
ity, we have assumed that the object space is a 3D surface
represented by the intensity image I�m, n� and the depth
mapD�m, n�. AnN-point N-LUT is pre-computed in advance.

First, the 3D surface is decomposed into horizontal seg-
ments, each containing consecutive object points that are iden-
tical or very similar in intensity and axial distance (depth) from
the hologram. Next, the run-length of each segment is deter-
mined, and the corresponding N-point PFP is retrieved from
the N-point N-LUT. An example is shown in Fig. 3(a), in
which a segment from the 3D surface with ‘q’ object points
(i.e., run-length is q) is taken to extracted a q-point PFP.
The retrieved N-point PFP is then shifted to the position of
the segment. Finally, a hologram of the 3D surface is generated
by summing the N-point PFP of all its segments.

Figure 3(b) depicts an example showing the partitioning of a
few horizontal segments of an object image, each of which is
comprised of pixels with similar intensity and axial distance
from the hologram plane. Each segment is labeled with the var-
iable ‘k’. In comparison with the parent N-LUT method [19],
the amount of computation involved is reduced as the holo-
gram is computed by accumulating the hologram fringes of
groups of object points (i.e., the N-point PFPs) instead of indi-
vidual ones. Later, the N-LUT method has also been extended
to the generation of holograms for 3D video sequence [22,23].

6. LINE SCAN METHOD

The line scan (LS) method was developed by Yang et al. [24]
with the aim of reducing the size of the N-LUT. In the N-LUT
method, the size of the LUT for the PFP of a single depth plane
is �M × N × B�. The total size of the N-LUT is equal to the size
of a PFP multiplied by the number of depth planes Dp. A PFP
is basically an FZP represented by the exponential function in
Eq. (1), which is in the form of concentric circular rings cen-
tered at the origin. Adopting the polar coordinates, the position
of a point at �mx , ny� can be denoted by �r cos θ, r sin θ�,
where r and θ are the radius or the distance of the point to the
origin and the azimuth, respectively. Equation (1) can be
rewritten in its polar form as

F �r, θ; zo� � exp
h
iwn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r cos θ�2 � �r sin θ�2 � z2o

p i
� exp

h
iwn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � z2o

p i
: (6)

From Eq. (6), we observe that the FZP is a function of the
radius and independent of the azimuth. In other words, an
FZP (or PFP) can be completely defined by any one of its radial
lines, which is referred to as a ‘scan line’. If the radial coordinate
is discretized into RN intervals, a small LUT with RN entries
will be sufficient to represent the PFP for a single depth plane.
Referring to the previous example, with RN � 1024, the
memory required to store the PFPs of a 3D object scene with
eight depth planes will be �RN × Dp × B� � 1024 × 8 × 2≈
16 kbytes, which is about 1000 times smaller than that
required to store the N-LUT.

In computing the hologram, a scan line is retrieved for each
object point and used to reconstruct the PFP for θ � �0, 2π�.

Fig. 3. (a) Retrieving an N-point PFP of a segment of the 3D sur-
face. (b) An example showing the partitioning of pixels in the source
image into horizontal segments, each having similar properties.
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A straightforward implementation is used to compute each
point of the PFP as

F �m, n; zo� � F �r cos θ, r sin θ; zo�: (7)

However, it can be inferred from Eq. (8) that each quadrant of
the PFP is in fact a mirror image of the others, i.e.,

F�m, n; zo�jm≤0;n≥0 � F�jmj, n; zo�, (8)

and

F �m, n; zo�jn≤0 � F �m, jnj; zo�: (9)

Hence, computation of the PFP from the scan line can be sim-
plified to the computation of the first quadrant of the PFP
(m; n ≥ 0), and the remaining quadrants are obtained from the
symmetrical relation in Eqs. (8) and (9). The process can be
divided into three steps, as illustrated in Fig. 4. In steps 1
and 2, a radial line is generated and expanded into a circular
arc covering the first quadrant of the PFP. In step 3, the rest of
the quadrants are constructed from the mirror images of the
first quadrant.

Expanding a radial line into a circular arc can be imple-
mented with Bresenham’s line algorithm [25]. However, as
pointed out in Ref. [26], some of the pixels in the PFP may
be missing. Enhancement on the method has been proposed
in Ref. [26] and later in Ref. [27].

7. SPLIT LOOK-UP-TABLE FRAMEWORK

Although the N-LUT method has reduced the size of the LUT,
the amount of computer memory required to store the pre-
computed data is still enormous, in the order of gigabytes. To
alleviate this problem, Pan et al. have developed the split LUT
(S-LUT) method [28]. Rewriting Eq. (2), we have

H �m, n� �
XP
p�1

Ap exp

�
iwn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

m � Δ2
n � z2p

q �
, (10)

where Δm�jm − upjδ, and Δn�jn − vpjδ.
Assuming Δm ≪ zp, Δn ≪ zp, and zp is an integer multiple

of λ, Eq. (10) can be expressed as

H �m, n� �
XP
p�1

ApOH �Δm, zp�OV �Δn, zp�, (11)

where

OH �Δm, zp� � exp

�
iwn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

m � z2p
q �

,

and

OV �Δn, zp� � exp

�
iwn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

n � z2p
q �

are the horizontal and the vertical light modulation factors,
both of which can be pre-computed in advance and stored
in the computer memory. In the generation of the hologram,
the pair of functions are fetched from the memory based on
values of Δm, Δn, and zp. As such, the remaining calculations
will be the product of the intensity Ap with the pair of retrieved
functions for each object point and the summing of the
holographic signals for all the object points.

Without loss of generality, we further assume that the pixel
size of the object and hologram spaces are identical (i.e., δ), and
both spaces have horizontal and vertical extents ofM rows and
N columns. The size of the LUTs for a single depth plane will
be 2M for OH �Δm, zp�j0<m<M and 2N for OV �Δn, zp�j0<n<N ,
resulting in an LUT with 2�M � N � entries, which is much
less than that required in the early LUTmethod. The size of the
S-LUT for multiple planes will be multiplied by the number of
depth planes that are used to discretize the 3D object along
the axial direction. Referring to a previous example, the
memory size of the S-LUT for the 1024 × 1024 hologram
is 2 × �1024 × 1024� × 8 × 2 ≈ 65.6 kbytes.

Generation of a hologram pixel at location �m, n� with the
S-LUT method is summarized in Fig. 5. The source object
point has an intensity Ap and is located at position
�up, vp; zp�. The horizontal separation Δm and the vertical sep-
aration Δn between the object point and the hologram pixel are
computed and taken to retrieve the horizontal and the vertical
light modulation factors. Subsequently, the intensity of the ob-
ject point is multiplied with the pair of light modulator factors
to give the hologram pixel.

8. COMPRESSED LOOK-UP-TABLE METHOD

The compressed LUT (C–LUT) method [29] is developed by
Jia et al. for further reducing the size of the S-LUT. As men-
tioned before, the total size of the S-LUT for handling a 3D
object is equal to the product of the number of depth planes
and the number of entries of the S-LUT for a single depth
plane. This will lead to the use of a huge amount of computer

Fig. 4. Line-scan method for generating the PFP.
Fig. 5. Computing a hologram pixel with the S-LUT method.
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memory if the number of depth planes is large. This short-
coming is overcome in the C-LUT method. To start with, the
spatial impulse response in Eq. (2) is replaced with Eq. (12)
based on the finding in Ref. [30] that the reconstructed image
of a Fraunhofer hologram is similar to that of a Fresnel holo-
gram. As such, the hologram of a 3D object comprised of P
object points can be derived from Fraunhofer diffraction as
given by

HF �m, n� �
XP−1
p�0

Ap exp

�
i2π
λ

�
m2 � n2

2zp
−
mup � nvp

zp

��
:

(12)

Assuming that the thickness of the 3D object is considerably
smaller than the mean distance zo between the object and the
hologram, the above equation can be rewritten as

HF �m, n� �
XP−1
p�0

ApL�m, n; zp�O 0
H �m, up�O 0

V �n, vp�, (13)

where L�m, n; zp� � exp
	
i2π
λ



m2�n2
2zp

��
is the longitudinal

light modulation factor, O 0
H �m, up� � exp

	
−i2π
λ


mup
zo

��
is the

horizontal light modulation factor, and O 0
V �n, vp� �

exp
	
−i2π
λ


nvp
zo

��
is the vertical light modulation factor.

In Eq. (13), only the longitudinal light modulation factor is
dependent on the distance of the depth plane. Hence, an LUT,
which is referred to as the C-LUT, can be constructed to hold
all the combinations of O 0

H �m, up� and O 0
V �n, vp� for different

values of �m, up� and �n, vp�, respectively. Note that both light
modulator factors are independent of the depth of the object
plane. As such, the overall size of the C-LUT is 2�M � N �,
which is equivalent to the size of a single depth plane S-LUT.
On the downside, the C-LUT method involves the calculation
of the longitudinal light modulation factor, which increases the
computation loading, as compared with the S-LUT method.

The process of applying the C-LUT method to generate a
hologram pixel from an object point is shown in Fig. 6. First,
the horizontal and vertical light modulator factors for each ob-
ject point are fetched from the computer memory. Next, the
product of the pair of light modulator factors, together with
the depth dependent longitudinal light modulator factor and

the intensity of the object point, is computed. The hologram
is obtained from the sum of the diffracted waves of all the object
points. Subsequent to Ref. [29], further reduction in the size of
the C-LUT by two times has been achieved with the accurate
C-LUT (AC-LUT) method in Ref. [31].

9. WAVEFRONT RECORDING PLANE METHOD

The concept of the wavefront recording plane (WRP), inspired
by Yoshikawa et al. [32], is suggested by Shimobaba et al. in
Ref. [33]. In simple terms, a WRP can be interpreted as a holo-
gram that is located close to the object space. If the thickness of
the object space is small (i.e., all the object points are located at
rather similar axial distance from the WRP), each object point
will emit a wavefront that is only covering a small FZP on the
WRP. A side view of the hologram, the WRP, and three object
points is shown in Fig. 7. Each object point is projecting a
small FZP on the WRP, and it can be seen that the size of
the FZP is proportional to the distance between an object point
and the WRP.

The process of applying the WRP method to generate a
hologram can be divided into two major stages, and outlined
as follows.

Stage 1: Referring to Fig. 7, each object point is casting a
small FZP on the WRP plane that is bounded by a small square
support. In other words, the optical wave that is emitted by
each object point on the WRP is bounded within the area
of its corresponding support. We denote the hologram pattern,
and the support of the pth object point on the WRP by
wp�m, n� and Sp respectively. The FZP corresponding to the
pth object point, which has intensity Ap, is given by

wp�m, n�j�m,n�∈Sp �
Ap

rp
exp

�
i2πrp
λ

�
, (14)

where rp is the distance between the object point and a pixel at
�m, n� on the WRP. The hologram on the WRP is the sum of
the FZPs of all the object points as

W �m, n� �
XP−1
p�0

wp�m, n�: (15)

Stage 2: After the WRP pattern is generated, it is converted
into a hologram with the Fresnel diffraction equation given by

H �m, n� � W �m, n� � h�m, n; zo�, (16)

where zo is the distance between the WRP and the hologram,
and h�m, n; zo� is the free-space impulse response in Fourier

Fig. 6. Computing a hologram pixel with the C-LUT method.
Fig. 7. Spatial relation between the object space, the WRP, and the
hologram plane.
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optics. As mentioned previously, each support Sp is a small
square. Hence, the computation involved in Eqs. (14) and
(15) is significantly lower than that required for computing
the hologram directly with Eq. (1). With the use of an
LUT [34], a 2048 × 2048 hologram representing 3 × 104 ob-
ject points can be generated with the WRP method at around
10 frames per second. To increase the frame rate, the source
image can be down-sampled to reduce the number of object
points. A fast WRP method, which does not require the use
of an LUT, has been demonstrated in Ref. [26]. In this ap-
proach, a small FZP of each object point is computed with
a fast algorithm, hence, saving the large computer memory that
is used in storing the LUT. Another fast method has been pro-
posed in Refs. [35,36], whereby the wavelet transform is em-
ployed to reduce the amount of computation. Later, the WRP
method has been extended to generate color holograms [37], as
well as holograms that are smaller than the object images with
the use of shifted Fresnel diffraction [38].

The WRP approach has two major disadvantages. First, in
order to speed up the hologram generation process, the number
of object points should be reduced. This problem can be alle-
viated by down-sampling the object scene, resulting in a sparse
image of degraded quality. However, if the down-sampling
factor is reduced, more object points will be included, and the
computation time of hologram generation is increased accord-
ingly. The second problem is that the separation between the
WRP must be closed to the object points, so that the support Sp
is small for all the object points. This is important for the WRP
method, as the computation time, as depicted in Eq. (14), is
proportional to the size of the support. In other words, in
order to maintain the computation efficiency of the WRP
method, the thickness (depth range) of the object must be
small. This problem has been addressed with the double WRP
[39] and multiple WRP methods [40–42]. In these approaches,
the object space is partitioned into two or more narrow zones
along the axial direction. A WRP is assigned to each zone to
record the diffraction patterns of its constituting object points.
The hologram is generated by summing the contributions of
the WRPs from all the zones. An alternative WRP method,
known as the tilted WRP method [43], is also effective in
generating holograms of a deep structure object scene.

In passing, we also note that apart from speeding up
the hologram generation process, the WRP framework can also
be applied in fast processing of the 3D image represented in a
hologram [44], such as image relighting [45] and enhance-
ment [46].

10. INTERPOLATED WAVEFRONT RECORDING
PLANE METHOD

As mentioned in section 9, the WRP method faces the dilemma
of trading off image quality with the computation efficiency. In
view of this, the interpolated WRP (IWRP) method [47] is
developed to alleviate this problem. The concept of this method
is to generate the diffracted pattern for a small region of points
instead of individual ones. The process can be divided into two
steps and outlined as follows.

Step 1: The object space and the WRP are first uniformly
divided into non-overlapping square blocks of size τ × τ. For

each block in the object space (which is indexed with the var-
iable ‘j’), its pixels are assigned the mean amplitude μaj and
mean depth values μdj (with reference to the WRP) of its con-
stituting pixels. If μaj > 0, the partition is referred to as a ‘non-
empty partition’. An identical area (i.e., same size and at the
same horizontal and vertical positions) is partitioned on the
WRP plane for each of the square blocks in the object space.
The area bounded by the jth square block, which is identical for
both the object space and the WRP, is referred to as the support
and denoted with the symbol Sj. It can be inferred that this
mechanism is equivalent to down-sampling and, subsequently,
interpolation of the object space. In down-sampling, each par-
tition is reduced to a single sample point carrying the mean
amplitude and mean depth value of the object points in it.
In interpolation, all of the pixels within the partition are
duplicated from the sample point. The diffraction fringe
pattern wj�m, n� on the WRP corresponding to the jth block
(i.e., support Sj) is given by

wj�m, n�j�m,n�∈Sj �
X
p

μaj
rm;n;p

exp

�
i2πrm;n;p

λ

�
, (17)

where rm;n;p is the distance between the pth object point in Sj
and a pixel at location �m, n� within the support Sj on the
WRP. It can be inferred from Eq. (17) that wj�m, n� is the
hologram of the jth square block of pixels in the object space.
Similar to the WRP method, an LUT can be constructed to
store pre-computed diffraction patterns of the small blocks for
different combinations of μaj and μdj .

Step 2: Next, after the hologram fringe patterns of all the
non-empty partitions have been derived with Eq. (17), the
holographic image on the WRP will be formed by the union
of the fringe pattern of the individual partition as

W �m, n� � ∪T −1
j�0wj�m, n�, (18)

where T is the number of non-empty partitions. As the WRP
now contains the fringe patterns of an interpolated object
image, it is renamed as IWRP. With the IWRP approach,
the generation of a 2048 × 2048 hologram at 40 frames per
second, representing an object scene with four million object
points, has been demonstrated in Ref. [47].

11. SUB-LINES AND MULTI-RATE FILTERING

In the generation of a 2D hologram from a 3D object, each
hologram pixel is contributed to by all of the pixels in the object
scene. SupposeM and N are the horizontal and vertical extents
of the hologram (which are assumed to be identical to that of
the object space), respectively, the computational loading is in
the order of �M × N �2. The concept of the sub-lines method is
to simplify the hologram generation computation into a one-
dimensional (1D) process. Inspired by the work on white light
digital hologram generation [48], Tsang et al. have extended the
concept to the generation of a digital Fresnel hologram [49,50].
The method can be divided into three stages and is outlined as
follows.

Stage 1: To begin with, it is assumed that the object points
are close together along the longitudinal direction and are lo-
cated at a mean axial distance zo from the hologram plane. The
object space is sliced into a stack of L uniformly spaced
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horizontal scan planes, as shown in Fig. 8. The process is equiv-
alent to the down-sampled object space by a factor of Dv along
the vertical direction with Δv � N

L being the separation be-
tween adjacent scan planes. For each scan plane, a horizontal
sub-line is generated on the hologram plane from the object
point(s) residing on it. The vertical position of a sub-line is
identical to that of the scan plane. Denoting the index of a scan
plane by the symbol t (where 0 ≤ t < L), the corresponding
sub-line is given by

O�m, t�j0≤t<L �
XT �t�

p�0

At ;p

rt ;p
exp

�
iπr2t ;p
λzt;p

�
, (19)

where At;p and zt ;p are the intensity of the pth object point and
its axial distance to the hologram plane, respectively. The term
rt ;p is the distance from the pth object point to the pixel at
horizontal position m on the sub-line, and T �t� is the total
number of object points on the scan plane. It can be envisaged
that the sequence of sub-linesO�m, t�j0≤t<L is a 2D array that is
comprised of discrete horizontal rows of complex-valued pixels.

Stage 2: In this stage, the empty space between adjacent
sub-lines is interpolated with a low-pass filter (LPF) g�m�. A
simple implementation of the interpolation filter is a rectangular
low-pass function. After applying the LPF, the discrete set of
sub-lines will be interpolated to a new array given by

O 0�m, n� � O
�
m,

n
Dv

�
� g�n�: (20)

Equation (20) can be interpreted as a multi-rate filtering
process, as the sizes of O�m, t� and g�n� are different. The
expression implies interpolation of O�m, t� to O 0�m, n� so that
the missing regions between the sub-lines are filled with the
interpolated pixels.

Stage 3: In the third stage, a hologram is generated from the
interpolated function O 0�m, n�. Mathematically, we have

H �m, n� � O 0�m, n� � Fv�n�, (21)

where Fv�n� � exp
	


i2π
λ

�

n2
2zo

��
, reminiscent of a 1D version of

the free-space impulse response in Fourier optics. From
Eqs. (19) to (21), it can be seen that the hologram generation
process has been decomposed into three 1D processes, resulting
in significant reduction of the computation loading.

The sub-lines method has five major advantages. First, the
generation of sub-lines can be realized with simple hardware,
such as the field programmable gate array (FPGA). According
to Ref. [51], with a commodity FPGA, the throughput of gen-
erating the sub-lines is over 108 points per second, enabling
a medium size hologram of 2048 × 2048 that can be generated
at over 25 frames per second. Second, the data size of the sub-
lines that are taken to represent a 3D object scene can be much
smaller than the hologram. Third, as a sub-line is a 1D signal, it
can be compressed to a one-bit representation with simple delta
modulation (DM) [52,53]. Fourth, apart from compressing the
sub-lines, it is also feasible to encrypt them as 1D sequences
[54] so that at the receiving end the hologram can only be gen-
erated and viewed with the correct encryption key. Fifth, the
multi-rate interpolation process can also be applied to magnify
the size of the object image [55].

12. CONCLUSION

Over the past decade, there are many new research areas in
the realm of CGH. A lot of these works are closely related
to the development of fast methods and algorithms for holo-
gram generation, which is not unexpected in view of the inten-
sive computation involved in the hologram formation process.
Whenever a new method emerges, there is always a question on
whether this will be the best and final candidate for CGH.
Insofar, it seems that such a unique, ultimate solution for
CGH is unlikely to happen. Simply speaking, there are numer-
ous factors that need to be addressed in CGH, e.g., optimizing
certain performance measure often leads to jeopardizing others.
In this paper, a number of contemporary methods for fast gen-
eration of a digital Fresnel hologram have been reported. Many
of these methods are partially or fully based on the use of an
LUT to replace tedious computing of hologram pixels through
direct retrieval of pre-stored values. As we have described in the
paper, although all of the computations can indeed be replaced
with LUT, the memory required will be beyond the practical
limits of even a modern computer. Besides, while the arithmetic
operations could be eliminated with a brute-force type of soft-
ware implementation, the CGH process is neither simplified
nor improved.

The overwhelming memory problem in a pure LUT
method can be alleviated by trading off the size of the LUT
with computation loading. We have described some represen-
tative works along this approach, namely, N-LUT, N-LUT
with run-length coding, S-LUT, C-LUT, and scan-line meth-
ods. It is difficult to say which LUT-based method is better, as
each has its own tradeoff between memory usage and compu-
tation loading. We have also presented the WRP, IWRP, and
sub-line methods, which share the common philosophy of

Fig. 8. Partitioning the object into scan planes, each contributing to
a sub-line on the hologram plane.
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speeding up the computation time through simplification of
the hologram formation process. These three methods, how-
ever, do not preclude the use of LUT in their implementation
and vice versa. In fact, both the WRP and the IWRP methods
have incorporated LUTs to enable hologram generation at high
frame rates. These favorable outcomes suggested that some
kind of synergy could be established between different ap-
proaches to further promote the efficiency of CGH in terms
of memory usage, computation time, and simplification in
the hologram formation process. We anticipate that this paper
will provide not only a survey of the current state-of-the-art in
CGH but could also inspire new research directions, some of
which could emerge through the crossover of existing methods.
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